Semi-analytical and numerical methods for computing transient waves in 2D acoustic / poroelastic stratified media

نویسندگان

  • Gaëlle Lefeuve-Mesgouez
  • Arnaud Mesgouez
  • Guillaume Chiavassa
  • G. Lefeuve-Mesgouez
  • A. Mesgouez
  • G. Chiavassa
  • B. Lombard
چکیده

Wave propagation in a stratified fluid / porous medium is studied here using analytical and numerical methods. The semi-analytical method is based on an exact stiffness matrix method coupled with a matrix conditioning procedure, preventing the occurrence of poorly conditioned numerical systems. Special attention is paid to calculating the Fourier integrals. The numerical method is based on a high order finite-difference time-domain scheme. Mesh refinement is applied near the interfaces to discretize the slow compressional diffusive wave predicted by Biot’s theory. Lastly, an immersed interface method is used to discretize the boundary conditions. The numerical benchmarks are based on realistic soil parameters and on various degrees of hydraulic contact at the fluid / porous boundary. The time evolution of the acoustic pressure and the porous velocity is plotted in the case of one and four interfaces. The excellent level of agreement found to exist between the two approaches confirms the validity of both methods, which cross-checks them and provides useful tools for future researches. ∗Corresponding author Email addresses: [email protected] (G. Lefeuve-Mesgouez), [email protected] (A. Mesgouez), [email protected] (G. Chiavassa), [email protected] (B. Lombard) Preprint submitted to Wave Motion April 18, 2012

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical Solution for Wave Propagation in Stratified Poroelastic Medium. Part I: the 2D Case

We are interested in the modeling of wave propagation in poroelastic media. We consider the biphasic Biot’s model in an infinite bilayered medium, with a plane interface. We adopt the Cagniard-De Hoop’s technique. This report is devoted to the calculation of analytical solutions in two dimensions. The solutions we present here have been used to validate numerical codes. Key-words: Biot’s model,...

متن کامل

Spectral-element simulations of wave propagation in porous media

S U M M A R Y We present a derivation of the equations describing wave propagation in porous media based upon an averaging technique which accommodates the transition from the microscopic to the macroscopic scale. We demonstrate that the governing macroscopic equations determined by Biot remain valid for media with gradients in porosity. In such media, the well-known expression for the change i...

متن کامل

Acoustic detection of buried objects in 3-D fluid saturated porous media: numerical modeling

Acoustic waves can be a viable tool for the detection and identification of land mines, unexplored ordnance (UXO), and other buried objects. Design of acoustic instruments and interpretation and processing of acoustic measurements call for accurate numerical models to simulate acoustic wave propagation in a heterogeneous soil with buried objects. Compared with the traditional seismic exploratio...

متن کامل

Numerical modeling of 1D transient poroelastic waves in the low-frequency range

Propagation of transient mechanical waves in porous media is numerically investigated in 1D. The framework is the linear Biot’s model with frequency-independant coefficients. The coexistence of a propagating fast wave and a diffusive slow wave makes numerical modeling tricky. A method combining three numerical tools is proposed: a fourth-order ADER scheme with time-splitting to deal with the ti...

متن کامل

Finite Volume Modeling of Poroelastic-Fluid Wave Propagation with Mapped Grids

In this work we develop a high-resolution mapped-grid finite volume method code to model wave propagation in two dimensions in systems of multiple orthotropic poroelastic media and/or fluids, with curved interfaces between different media. We use a unified formulation to simplify modeling of the various interface conditions — open pores, imperfect hydraulic contact, or sealed pores — that may e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017